	a d'Englineering a that	
	CBCS SCHEME (CENTRAL	
USN	Agyar, Mangaloe	15ME742
Seventh Semester B.F. Degree Examination Aug /Sent 2020		
Tribology		
	Thology	
Time: 3 hrs. Max. Marks: 80		
Note: 1. Answer any FIVE full questions, choosing ONE full question from each module.		
	2. Use of design data hand book is permitted.	
	Module-1	
1	a. Define the following:	
	(i) Newtanian fluid	
	(11) Viscosity (iii) Eluidity	
	(iii) Fluidity (iv) Viscosity index	(08 Marks)
	b. Explain the working of "Ostwald Viscometer" with a neat sketch.	(08 Marks)
•	OR	
2	a. Explain with sketches, the regimes of lubrication.	(12 Marks)
	b. List the enaracteristics of a good hubicant.	(04 Marks)
	Module-2	
3	a. Explain the following with neat sketch:	
	(i) Inclined plane Rig	
	(11) Pin-on-disk Rig b Write short notes on Friction of Polymers and ceramic materials	(08 Marks) (08 Marks)
	b. Write short notes on Friction of Forymers and certainic materials.	(00 WIAIKS)
	OR	
4	a. Define Wear. Classify the Wear. Explain briefly Chemical Wear.	(08 Marks)
	b. Explain the Delamination theory of Wear.	(08 Marks)
	Module-3	
5 a. Derive the Petroff's equation and expression for coefficient of friction in lightly loaded		
	bearing.	(08 Marks)
	b. A full journal bearing of an air compressor has the following specifications: Journal diameter = 63 mm	
	Bearing length = 50 mm	
	Diametral clearance = 0.1 mm	
	Radial load on journal = $G30N$	
	Viscosity of lubricant = 3 cp	
	Consider the bearing as lightly loaded bearing. Determine speed of journal and t	nower loss in
	bearing.	(08 Marks)
(OR Design of a Description in the dimension	
0	Derive an expression for Reynolds equation in two dimensions.	(10 Marks)
	1 of 2	
	\checkmark	

15ME742

Module-4

7

Derive an expression for pressure distribution for plane slider bearing with a fixed shoe.

(16 Marks)

(08 Marks)

OR

- 8 a. Derive an expression for load carrying capacity of hydrostatic bearing.
 - b. Following data refers to hydrostatic thrust bearing: Shaft speed = 720 rpm Shaft dia = 500 mm Recess dia = 350 mm Viscosity of an oil = 30 cp
 - Minimum film thickness = 0.15 mm

Supplying pressure = 5 MPa

- Determine: (i) Load capacity
 - (iii) Pumping power loss

(ii) Flow requirement (iv) Frictional power loss

(08 Marks)

Module-5

- 9 a. List the properties of bearing materials. Explain conformability and embedability with respect to bearing materials. (08 Marks)
 - b. Explain any four commonly used bearing materials. (08 Marks)

OR

- 10 a. What do you mean by surface engineering? List the processes used to improve the surface characteristics. (08 Marks)
 - b. Discuss thermal hardening with respect to surface modification. List the advantages and disadvantages of thermal hardening. (08 Marks)